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Projection Pursuit Density Estimation
JEROME H. FRIEDMAN, WERNER STUETZLE, and ANNE SCHROEDER*

The projection pursuit methodology is applied to the mul-
tivariate density estimation problem. The resulting non-
parametric procedure is often less biased than the kernel
and near-neighbor methods. In addition, graphical infor-
mation is produced that can be used to help gain geo-
metric insight into the multivariate data distribution.

KEY WORDS: Density estimation; Projection pursuit;
Nonparametric methods.

1. INTRODUCTION

The formal goal of nonparametric density estimation is
to estimate the probability density of a p-dimensional ran-
dom vector X € R? on the basis of iid observations x;,

. ., x5 without making the assumption that the density
belongs to a particular parametric family. Often in prac-
tice, a more important objective is to gain geometric in-
sight into the data distribution in R?.

Nonparametric estimation of univariate probability
density functions has been extensively studied. Examples
of successful methods are the related techniques of kernel
estimates (Parzen 1962; Rosenblatt 1971), near-neighbor
estimates (Loftsgaarden and Quesenberry 1965), and
splines (Boneva, Kendall, and Stefanov 1971). A good
overview was given by Tapia and Thompson (1978). The
direct extension of these methods to multivariate settings,
however, has not been as successful in practice. This can
be attributed partly to their deteriorating statistical per-
formance, caused by the so-called ‘‘curse of dimen-
sionality”’ (Bellman 1961), which requires very large
spans (radii of neighborhoods) to achieve sufficient
counts. The resulting estimates are then highly biased. In
addition, these methods do not provide any comprehen-
sible information about the structure of the multivariate
point cloud.

Our approach to multivariate density estimation is
based on the notion of projection pursuit (Friedman and
Tukey 1974; Friedman and Stuetzle 1981). It attempts to
overcome the curse of dimensionality by extending the
classical univariate density estimation methods to higher
dimensions in a manner that involves only univariate es-
timation. As a by-product, graphical information is pro-
duced that can be helpful in exploring and understanding
the multivariate data distribution.

* Jerome H. Friedman is Professor and Werner Stuetzle is Professor,
Statistics Department and Linear Accelerator Center, Stanford Uni-
versity, Stanford, CA 94305. Anne Schroeder is a staff member, Institut
National de Recherche en Informatique et Automatique, Le Chesnay,
France. The research for this article was supported by Department of
Energy Contracts DE-AC-03-76F00515 and DE-AT03-81-ER10843, Of-
fice of Naval Research Contract ONR-N-00014-81-K-0340, and Army
Research Office Contract DAAG29-82-K-0056.

2. OVERVIEW

The goal of projection pursuit methods is to estimate
multivariate functions by combinations of smooth uni-
variate (ridge) functions of carefully selected linear com-
binations of the variables.

Our projection pursuit density estimation (PPDE)
method constructs estimates of the form

M
pu®) = po®) [I fr(®n - x), m
m=1

where p,, is the density estimate (or current model) after
M iterations of the procedure; py is a given multivariate
density function to be used as the initial model; 0,, is a
unit vector specifying a direction in R”?, so 0,, - X =
>'7_1 0,.x; is a linear combination of the original coor-
dinate measurements; and f,, is a univariate function.

From (1) PPDE is seen to approximate the multivariate
density by an initially proposed density po, multiplied
(augmented) by a product of univariate functions f,, of
linear combinations 0,, - x of the coordinates. The choice
of the initial density is left to the user and should reflect
his best a priori knowledge of the data. A Gaussian den-
sity with sample mean and sample covariance matrix is
often a natural choice. The purpose of PPDE is to choose
the directions 0,,, and construct the corresponding func-
tions f,,.(0,, - x). The product of these functions estimates
the ratio of the data density to the initial model density.

From (1) we obtain the recursion relation

@

Since fas is used to modify pas—1 to obtain p,s, we refer
to the f,, as augmenting functions.

The recursive definition of model (2) suggests a step-
wise approach for its construction. At the Mth iteration,
there is a current model p,—1(x) constructed in the pre-
vious steps. (For the first step, M = 1, the current model
is the initial model po(x) specified by the user.) Given
py—1(x), we seek a new model ps(x) to serve as a better
approximation to the data density p(x). Thus a direction
0 and its corresponding augmenting function f(0as -
x) are chosen to maximize the goodness of fit of pas(x).
We measure relative goodness of fit by the cross-entropy
term of the Kullback—-Leibler distance

Pm(X) = par—1(X)f 2 (02s - X).

W= f logp a(x)p(x)dx. 3)
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From (2) we see that W achieves its maximum at the same
location as

WO, fa) = [ 108 FulOn - Opdx. (@)

Equation (4) is to be maximized under the constraint that
pm(x) be properly normalized, that is, | pa(x)dx
For a given direction 6,5, and known p(x),

Faa@rr - X) = p®™(Oas - X)pp—1°" Opr - x)  (5)

is seen to maximize (4). Here p®* and p,—1® represent
the data and current model marginal densities along the
(one-dimensional) subspace spanned by 0,,. Using this
fas for given 0,,, it remains to find the direction 0,, for
which (4) achieves the maximum value. The optimal 6,,
and its corresponding augmenting function fa;(0s; * X)
define the new model through (2).

In actual applications the data density p(x) is unknown.
We have, instead, a sample of N iid observations x;, x5,

. .., xn from p(x). The cross-entropy W is estimated by
the log-likelihood

. 1 X
W= N g logpar(x;). 6)

Analogously, w(0,s, far) is estimated by

. 13

Ww(Orr, fra) = N Z log fam(0a - X)), )]
where f(05 - X) is an estimate for the ratio of data and
model marginals along 0,. The optimal value 0,, that
maximizes W(0ys, far), and thus the loglikelihood W of
the new model, is determined by numerical optimization.

3. ESTIMATION PROCEDURES

We now discuss the estimation of f (9 - x), the ratio of
data and model marginals along a direction 0. First con-
sider the current model marginal p,_;® (0 - x). Without
loss of generality, we let 6 be the first coordinate axis,
that is, 6 - x = x;. Then

Pau-1®6) = [ proiWdeadys -+ drn )

If pasr—1%(x1) is continuous, then

pM—le(xl)
l 1 x1+h o
= S e P12 ©)
=,1g%2hf I — h=z=x; + Wpp_1°Q)dz, (10)

I(s) = 1 if sistrue

0 otherwise.

(11)
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From (8) one has

Pm—1°(x1)

= lim

h—)OthI(Xl h=yi=x1+ h)pr-1(y)dy

= lim 2hE,,M Mxy —h=y,=x, + h)].
Our estimate of pas—1%(x;) is obtained from (12) by using
a small finite value for 4 and employing a Monte Carlo
method to estimate the expected value. A Monte Carlo
sample yi, y2, . . . , ¥n,, Of size N, is generated with
density pas—1(x), and

NS

Ixi —h=yi1=x1 + 13
2thj§1 1 —h=ypi=xi+h) (13
is taken as our estimate of pas—1°(x;). Since the choice
of x as the direction 0 was arbitrary, (13) can be written
equally as

(12)

ﬁM—le(xl) =

Pr—1°(0 - x)

—_ <

Zth,21 I0O-x—h=0-y;=<0-x+ h) (14
for any 0. Note that the same Monte Carlo sample can
be used for all 6 and x. In Appendix B, we discuss in
detail procedures for generating a Monte Carlo sample
from the density pas—(x).

By assumption, the data represent a sample from p(x)
that can be used, in analogy with (14), to estimate the
data marginal p°(9 - x) by

p°6 - x)
1 N
= 5N 2?

‘x—h=0-x;,=0-x+ h). (15

From (5) our estimate of the augmenting function be-
comes

N
NeSIO0-x—h=0-x

=0-x + h)

fo® - x) = l;:
NYIO-x—-—h=0-y,<0x+ h)

j=1

(16)

This is just the ratio of the fraction of observation counts
to the fraction of Monte Carlo counts in an interval of
width 2k centered at 6 - x. To help stabilize the denom-
inator, we choose /4 to always include exactly o Ny Monte
Carlo observations. In this case (16) becomes

fo(0 - x)

<

= (O-x—hse-x,- 0-x+h). A7)

an

L

aN ;
The fraction « is called the span; it is a parameter of the
procedure. In actual applications the span can be adjusted
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based on visual inspection of the augmenting functions
fm and the histogram estimates of the marginals of data
and model along the directions 6,,. The binwidths of the
histograms should be chosen small so that they estimate
the marginals without much bias. The goal is to pick as
large a span as possible, which will make the augmenting
functions f,, smooth, subject to thé constraint that the
histograms of data and model along each of the directions
should not differ systematically.

4. REDUNDANT-VARIABLE ELIMINATION

For purposes of interpretation, it is desirable that
models be parsimonious. That is, models should involve
only as many variables as are required for an adequate
description of the data. For models constructed by pro-
jection pursuit, this means that each solution linear com-
bination 0, should involve only those predictor variables
that are necessary. Because of sampling fluctuations, it
often happens that several variables enter into a solution
linear combination (usually with small coefficients), but
their removal will not substantially affect the quality of
the solution. This is especially true if some of the vari-
ables are highly correlated.

Redundant variables entering into a solution linear
combination 0,, can be eliminated by the following (re-
verse) stepwise procedure. Each nonzero coefficient is
in turn set to zero, keeping all other coefficients at their
solution values; the corresponding augmenting function
is computed and the log-likelihood is obtained. That vari-
able x for which this (deleted) log-likelihood W, is larg-
est becomes a candidate for elimination. Let x; be the
variable for which the deleted log-likelihood W, is small-
est, and let W be the log-likelihood for the complete
solution (no variables deleted). If

We — Wy > B(We — W), (18)

then the elimination procedure stops and the complete
solution is accepted. Otherwise xp is deleted (coefficient
set to zero) and the above procedure is repeated (next
iterative pass) for all variables with nonzero coefficients.
This iterative procedure terminates when the candidate
variable for an iteration x cannot be delected (i.e., when
(18) is true). The quantity B is a user-specified parameter.

5. TERMINATION CRITERIA

As with any stepwise procedure, one needs a criterion
for stopping the iteration at some (Mth) step. Stopping
too soon can increase the bias of the estimator, and not
stopping soon enough can unduly increase its variance.
~Optimal termination of stepwise procedures has been
studied (see Stone 1974 and references therein); these
methods can be applied here. In practice, stepwise pro-
cedures are often terminated subjectively, based on an
inspection of successive values of the goodness-of-fit cri-
terion.

PPDE can provide several additional aids in judging
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whether a new step enhances the model enough to be
included. One can compare par—1°(0a - x) (the current
model marginal along 0,,) with p®(0,, - x) (the actual
data marginal along 0s). The ratio of these two densities
would be the Mth augmenting function. Since 0,/ is cho-
sen to maximize (in the likelihood sense) the difference
between data and model marginals, their comparison in
this projection represents a genuine comparison of the
full multivariate densities for quality. Our experience in-
dicates that graphical comparisons are most effective.
Graphical inspection of fa/(8a - X) can also be used to
judge whether it should be included in the model. If the
graph of f /(0 - X) versus 0, - x displays a noisy pattern
with no systematic tendency, then its inclusion will likely
only increase the variance of the density estimate. On the
other hand, a definite tendency indicates that fs(0s - X)
is dealing with a genuine inadequacy of the present model.

6. EXPRESSION OF THE RESULTS

From the formal point of view, the result of applying
PPDE is an estimate of the data density specified by the
initial model, a series of directions (unit vectors) 0, €
R?, and a corresponding set of augmenting functions
fm(0,. - X). The augmenting functions can be stored as
specific values associated with each observation. Be-
cause of their inherent smoothness, however, this rep-
resentation is highly redundant and a bit cumbersome.
For this reason, we approximate each augmenting func-
tion f,, by a cubic spline function

L
sm(@) = 2, BimBi(2). (19)
I=1

The B)(z) are basic cubic B-splines (de Boor 1978), and
the B,» are determined by a least squares fit of s, to the
observations (8, - Xi, fm(@m - %)), i =1,..., N. The
number of knots L is chosen to be inversely proportional
to the span a (17). The internal knots are placed such that
equal numbers of Monte Carlo observations fall between
each pair.

7. EXAMPLES

We illustrate the use of PPDE by applying it to three
examples. In all examples except the last, the initial
model po(x) was taken to be Gaussian with sample mean
and sample covariance matrix, the logarithm of the like-
lihood of the data sample under the initial model was
arbitrary set to zero, and the size of the Monte Carlo
sample was taken to be twice the data sample size.

The first example is especially simple and was chosen
primarily to illustrate the functioning of the algorithm. In
it 225 observations were generated in two dimensions
from a uniform mixture of three Gaussian distributions,
with unit covariance matrices and centers at the vertices
of an equilaterial triangle of sidelength six. Figure 1 shows
the true density function. Because the data for this ex-
ample are only two-dimensional, it is possible to monitor
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Figure 1. True Density Function—Gaussian Mixture.

the progress of the PPDE procedure as it attempts to
iteratively construct the two-dimensional density from
one-dimensional projections.

Figure 2 shows the initial model approximation po(x),
a Gaussian with sample mean and sample covariance ma-
trix. Figure 3a shows superimposed histograms of the
data (---) and the Monte Carlo sample drawn from p((x)
(X) as projected onto the first solution linear combination
0; = (.0, 1.0), and Figure 3b shows the first augmenting
function f;(0; - x). (Note that augmenting functions are
not well defined and thus can behave strangely in regions
where both the data density and current model estimate
are both very small. This has no effect on the quality of
the resulting density estimate.) The estimate after the first
iteration (Figure 3c) achieves an increase in log-likelihood
of 62.8. Taken by itself this number does not mean much,
but it is useful to compare the relative effects of adding
additional terms to the model.

ZLT7 AL SO
2 aasna i
eSS
25550 ,'0.:.. SRS

Figure 2. Initial Model po(x)—Gaussian With Sample Mean and
Sample Covariance.
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Figure 4a shows the data and a Monte Carlo sample
drawn from p(x) as projected on the second solution lin-
ear combination 6, = (.87, .49). Figure 4b shows the
second augmenting function f,(0, - x) plotted versus 0,
x. The increase in log-likelihood of 75.7 and Figure 4 a b
indicate that p,(x) is a substantial improvement over
p1(x). This is confirmed by Figure 4c, which illustrates
p2(x). The three-peak structure of p(x)—the true data
density—is now reproduced in the estimate p,(x).

Figure 5a shows the superimposed histograms of data
and Monte Carlo as projected onto the third solution di-
rection 03 = (.89, —.45). The model marginal is system-
atically too low in the left peak and too high in the valley.
Figure 5b shows the augmenting function for the third
term. Figure 5 a and b and the increase in log-likelihood
of 43.3 indicate that inclusion of a third term should im-
prove the estimate. Indeed it does improve, as demon-
strated in Figure Sc.

The second example is designed to lend some credi-
bility to the claim that PPDE will outperform standard,
nonadaptive density estimation methods in certain situ-
ations. We compare PPDE to the k nearest neighbor den-
sity estimator (KNNE). Let x4, . . . , X, be an iid sample
from some unknown density p(x). KNNE estimates the
density at some point xo by

P(x0) = k/nvoli(xo), (20)

where voli(xo) is the volume of the smallest sphere cen-
tered at xo and containing k observations. The number k&
of near neighbors is a parameter of the estimator to be
chosen by the user; it controls the trade-off between bias
and variance of the estimate. In our comparisons we al-
ways picked the optimal value of k, the value that makes
KNNE work best. Note that this, of course, is impossible
to do in practice when the true underlying density is un-
known.

We compare PPDE and KNNE for three different sce-
narios. The first one is the same as in Example 1: the true
density is taken to be a uniform mixture of three standard
Gaussians, centered at the vertices of an equilateral tri-
angle of sidelength six. In the second scenario, the data
are five-dimensional. The distribution in the first two di-
mensions is exactly the same as before; the remaining
three variables have independent Gaussian distributions
with standard deviation 3. The structure of the density
thus lies in the first two variables; the three remaining
variables only add noise. The noise standard deviation
was chosen to give all five variables roughly the same
variance. The third scenario is essentially the same as the
second, but there are seven noise dimensions instead of
three and the data, therefore, are 10-dimensional. In all
three scenarios the sample size is N = 225.

An important question concerns what measure of dis-
tance between true and estimated density to use when
comparing the estimators. We want the measure to reflect
how well the estimators can reproduce the main feature
of the underlying density, that is, the presence of three
clusters. The Kullback-Leibler distance would be an ob-
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f1(81 - x); (c) model after the first iteration.
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vious choice, but it overemphasizes differences in the
tails, where the KNNE cannot be expected to do very
well. We chose to base our comparison on the expected
squared error, integrated over a region E in space con-
taining most of the mass of the true underlying density:

EISE = fE E(p(x) — p(x))? dx.

To ease interpretation, we do not report EISE but, rather,
the expected percentage of variance explained.

@n

PVE = 100 (1 — EISE/var), (22)
where
var = [ (o) = p? dx 23)
and
1
P = it Jp P dx- 4)

We chose the region E to be elliptical with principal axis
along the coordinate directions. The lengths of the prin-
cipal axis are 12 for coordinates 1 and 2, and 15 for the
noise coordinates.

One small problem that we have ignored so far is nor-
malization of the KNNE estimate. We are obviously not
interested in measuring error that is simply due to the
KNNE estimate’s not being normalized properly. For
each of the three scenarios described previously, we thus
multiply the KNNE estimates with a factor chosen to
minimize the expected integrated squared error. This fac-
tor of course can be found only in a simulation situation
in which the true underlying density is known. Table 1
shows the results of our simulation. The pattern is quite
clear. The two estimators have about the same perfor-
mance for scenario 1. The performance of KNNE deteri-
orates completely, however, as noise variables are added;
it explains only 9% of the variance in 10 dimensions. The
performance of PPDE is influenced to a much lesser ex-
tent; it still explains 63% of the variance in 10 dimensions.

The difference in performance between KNNE and
PPDE for the ten-dimensional problem is further illus-
trated by Figure 6 a—h. Each figure shows the cross-sec-
tion of a density in the plane spanned by the first two
coordinate axes, that is, p(x, y, 0, . . . , 0) plotted as a
function of x and y. Figure 6 a—d shows the cross-sections
of the PPDE estimates for the first four of our Monte
Carlo trials; Figure 6 e~h shows the corresponding cross-
sections of the KNNE estimates. We note that in each
case the PPDE estimate reproduces the salient structure,
whereas the KNNE estimate has little to do with reality.

The next example illustrates the use of PPDE in a
purely data-analytic setting. For this example, we used
data from the diebetes study of Reaven and Miller (1979).
For each of 145 subjects in the study, five variables were
measured: relative weight, a measure of glucose toler-
ance, a second measure of glucose tolerance (glucose
area), a measure of insulin secretion (insulin area), and
a measure of how glucose and insulin interact (SSPG).
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Figure 4. PPDE Estimate—Second lteration. (a) Data and model
marginals along 0> = (.87, .49); (b) second augmenting function
f2(02 + x); (c) model after the second iteration.
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The two measures of glucose tolerance exhibit a high de-
gree of linear association (r = .96), so the first one is not
considered.

Our purpose with this example is to see how well the
four-dimensional data density p(x) can be represented as
a product of two two-dimensional marginal densities
Pav(Xa, Xb) Dca(xc, xa). If the data density could be fac-
tored into such a product for a specific pairing of varia-
bles, (ab) (cd), then all of the information about the data
structure in the full four-dimensional space would be con-
tained in the two scatterplots—variable a versus variable
b and variable ¢ versus variable d.

Unlike in the previous examples, the initial model is
not explicitly defined; it is given by the factored approx-
imation

Po(X) = pap(Xa, Xp)PcalXc, Xa), (25)

with a specific choice for the variables a, b, ¢, and d. The
two-dimensional marginal densities in (25) are taken to
be the actual data as projected onto the subspaces
spanned by (x,, x5) and (x., x4), respectively. Since it is
not our purpose to provide explicit density estimates, it
is not necessary to have an explicit (computable) repre-
sentation for po(x). All that is necessary is that we be able
to draw a sample from it. Such a sample of size N (here
N = 145) is generated by randomly permuting the ob-
servation labels of the (x,x,) pairs with respect to the
(xcxq) pairs. Let (71, r2, . . ., rn) be a random permu-
tation of the integers (1, 2, .. . ; N). The Monte Carlo
sample from the initial model is taken to be the four-tuples

X1a X16Xric Xrd

X2a X2b Xryc Xr2d

XNa XNb Xrne Xrnd-

As many Monte Carlo observations as needed can be ob-
tained by repeating this procedure with different random
permutations.

Table 2 shows the increase in log-likelihood achieved
by PPDE, after two and four iterations, starting with the
three different initials models (25) specified by the three
distinct groupings (a, b), (c, d). It is clear that the least
improvement was associated with

Po(X) = pi3(x1, x3)p2a(x2, x4), (26)

indicating that this factorization gives the best represen-
tation of the actual data density. Figure 7a shows a scat-
terplot of x; versus x3, and Figure 7b shows x, versus x4
for the data sample. The results in Table 2 indicate that
this is the best pair of plots in which to view the four-
dimensional data structure. Starting with an initial density
equal to the product of the two (two-dimensional) den-
sities shown in Figure 7 a and b, however, PPDE was
able to construct a model with substantially greater like-
lihood (see Table 2), indicating that Figure 7 a and b does
not reveal all of the data structure in the full four-dimen-
sional space.
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a

Table 1. Percentage of Variance Explained by
PPDE and KNNE Estimators

PPDE KNNE
Dimensions, Monte Carlo Standard Monte Carlo Standard
p Estimate (%) Deviation Estimate (%) Deviation
2 79 3 80 1
5 69 7 42 2
10 63 5 9 2

This is verified in Figure 7c, where the 145 data points
(-) and 145 Monte Carlo points (+’s) drawn from po(x)
(26) are shown projected on the plane spanned by the first
two solution directions, 6, = (—.29, —.37, .38, .80) and
0, = (—.08, .92, —.37, —.11). The horizontal axis is 0,
- x and the vertical axis is (02 — (02 - 0;)01) - x/ || 02 —
(62 - 01)8; |. The data have roughly the same shape as
the factored approximation (26) but are more tightly con-
centrated, especially in the circular ball centered at (0,
0).

8. DISCUSSION

As a formal estimator of a multivariate density func-
tion, PPDE shares advantages common to projection pur-
suit procedures. Since all estimation is carried out in a
univariate setting, the high bias inherent in other multi-
variate nonparametric density estimators can often be
avoided. The PPDE estimate is given in a concise func-
tional form, (1) and (19); and it can be graphically rep-
resented. The graphical representation can be used to ad-
just the main parameters of the procedure, the span o and
the number M of terms in the model.

Bias is encountered with PPDE when many terms are
required to provide a good representation of the true data
density, but only a few can be estimated because of in-
sufficient sample size. In these cases it is important that
the first few terms be able to approximate a wide variety
of functions so that the most salient features of the data

P X X R X R density can be modeled. In the limit M — «, any density
function can be represented by (1) (for any strictly pos-
c itive py), but even for moderate M, functions of this form
constitute a rich class. In addition, the choice of initial
model po permits the user to introduce any knowledge he
may have concerning the density function, thereby al-
lowing a further reduction in bias.
The success of PPDE will, of course, depend on the
particular nature of the actual data density. Examples of

Table 2. Increase in (Log) Likelihood of PPDE
Solutions From Factored Initial Model p, (x) =
Pab (Xa:xb)pcd(xc:xd) (third example)

N
“ Number of
t::‘ Combination Iterations
ORI
RIS a b c d 2 4
5>
Figure 5. PPDE Estimate—Third Iteration. (a) Data and model : g 2 2 E?Z 1%;
marginals along 0s = (.89, —.45); (b) third augmenting function f3(03 1 4 2 3 85:8 122:1

- x); (¢) model after the third iteration.
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density functions requiring large M in (1) are those with of the same density value (unless, of course, this structure
highly concave isopleths or spherically nested isopleths is anticipated and incorporated in the initial model po).
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APPENDIX A: BACK ADJUSTMENT OF THE
AUGMENTING FUNCTIONS

The basic iterative procedure described in Section 2 is
(using the language of linear regression) stagewise in that
each 0, and its corresponding f s are chosen as the so-
lution to an optimization problem, holding all previous
0., and f,,(m < M) fixed. It is sometimes possible to
improve the goodness of fit of the model by refitting all
fm(m = M) after a new term is included in the model.
This is done in an iterative manner similar to the basic
(outer) iteration procedure except that the directions 0,,,(1
= m = M) are held fixed to avoid the (costly) numerical
optimization. At each stage m of this inner iterative pro-
cedure, f,,(0,, - x) is readjusted to maximize the log-like-
lihood (3) given all f;(8; - x), j # m. One complete pass
through this inner iteration produces a new set of aug-
menting functions, which comprise a model with (pos-
sibly) higher likelihood. Since this pass has changed each
fm, it is possible that yet another pass can increase the
likelihood still further. Thus the passes themselves are
iterated until no increase in likelihood is observed.

We now discuss the calculation of a new f,,(0,, * x),
given the f;(0; - x) for j # m. Let

p(m)(x) = Po(X) H fj(ej X) = pM(X)/fm(em : X).

JF*Em

(A.1)

We seek a new function f,,'(0,, - x) that maximizes

WO, Fn') = [ 108 'O 0p() dx  (A2)

subject to the constraint

| P @' @m0 ax =1 (A3)
The solution is
fm,(em : X) = Pem(ﬁm : x)/.D(m)em(em : X), (A4)
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where the numerator and denominator represent the cor-
responding marginal densities. These marginal densities
are estimated as described in Section 3. The resulting
estimate for f,,,’ then replaces f ,,, in the new model p 5,(x).

APPENDIX B: MONTE CARLO SAMPLING

To apply PPDE, it is necessary to draw a Monte Carlo
sample from both the initial model po(x) and the current
model p,—1(x). For many choices of po(x), there exist
special algorithms that allow efficient direct sampling
(see, e.g., Rubinstein 1981). Densities for which this is
not the case can be sampled using the accept/reject
method (Kronmal and Peterson 1981).

Suppose a Monte Carlo sample drawn from a density
q(x) is available and one wishes a sample drawn from p(x).
Let r(x) = p(x)/q(x) and

v = max r(x). (B.1)
Consider each Monte Carlo observation x; in turn. Draw
a uniform random number u; in the interval [0, 1]. If u;y
= r(x;), accept the ith observation; otherwise reject it.
The accepted Monte Carlo observations will be a random
sample drawn from p(x).

This accept/reject method can be used to draw a ran-
dom sample from any density p(x). The efficiency of the
procedure (number accepted, divided by number ac-
cepted plus number rejected) will be greater the more
closely g(x) resembles p(x) in the sense of low variability
of p(x)/q(x).

The form of pa—1(x) ((1) and (2)) permits reasonably
efficient sampling by the accept/reject method. First, the
random sample drawn from pas-»(x), available from the
previous iteration, is considered. From (1) and (A.4), we
have
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Figure 6. Comparison of Projection Pursuit and k Nearest Neighbor Density Estimates on a 10-Dimensional Problem. (a—d) Two-
dimensional cross-sections of PPDE estimates for first four Monte Carlo trials; (e—h) two-dimensional cross-sections of KNNE estimates
for first four Monte Carlo trials.
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Figure 7. Exploratory Analysis—Density Factorization. (a) Dia-
betes data, x4 versus xs; (b) diabetes data, x> versus xa; (c) diabetes
data (-) and Monte Carlo from factored model po(x)(+) projection
onto plane spanned by first two solution linear combinations.
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pu_1® _ " O %)
pM—Z(x) m=1 fm(em : X)

We estimate the maximum value of (B.2) by its largest
value over the data sample. Applying the accept/reject
procedure to the Monte Carlo sample drawn from pa,—»
yields a (smaller) sample drawn from pas—;(x). The re-
maining Monte Carlo observations are drawn from
pam—1(x) by applying the accept/reject procedure to a sam-
ple from po(x), using

fm-1Orm-1-%). (B.2)

M-1

pM—l(x) H f ,(e X)

Po(x)
Again, the maximum value of (B.3) is estimated by its
largest value over the data sample,
M-1

max H Fm'Om * Xo).

1=i=N ,,

(B.3)

A

Y= (B.4)

A small problem can arise because the maxima of (B.2)
and (B.3) might not be assumed at one of the original data
points. We could encounter a Monte Carlo observation
y with r(y) > v. In this case, y is included in the sample
L times, where L is the integer-part of r( y)/ v.The quantlty
r(y) — L is then used with the standard accept/reject pro-
cedure to determine whether y is accepted yet another
time.

[Received January 1982. Revised March 1984.]

REFERENCES

BELLMAN, R.E. (1961), Adaptive Control Processes, Princeton, N.J.:
Princeton University Press.

BONEVA, L.I., KENDALL, D.G., and STEFANOV, 1. (1971),
Spline Transformations,”” Journal of the Royal Statistical Society,
Ser. B, 33, 1-70.

pEBOOR, D. (1978), A Practical Guide to Splines, New York: Springer-
Verlag.

FRIEDMAN, J.H., and TUKEY, J.W. (1974), ‘A Projection Pursuit
Algorithm for Exploratory Data Analysis,”” IEEE Transactions on
Computers, C23, 881-890.

FRIEDMAN, J.H., and STUETZLE, W. (1981), ‘“‘Projection Pursuit
Regression,’’ Journal of the American Statistical Association, 76,
817-823.

KRONMAL, R.A., and PETERSON, A.V. (1981), ‘A Variant of the
Acceptance-Rejection Method for Computer Generation of Random
Variables,’’ Journal of the American Statistical Association, 76, 446—
451.

LOFTSGAARDEN, D.O., and QUESENBERRY, C.P. (1965), “A
Nonparametric Estimate of a Multivariate Density Function,” Annals
of Mathematical Statistics, 36, 1049-1051.

PARZEN, E. (1962), ‘‘On the Estimation of a Probability Density Func-
tion and the Mode,”’ Annals of Mathematical Statistics, 33, 832-837.

REAVEN, G.M., and MILLER, R.G. (1979), ‘‘An Attempt to Define
the Nature of Chemical Diabetes Using Multidimensional Analyses,”
Diabetologia, 16, 17-24.

ROSENBLATT, M. (1971), ‘‘Curve Estimates,” Annals of Mathe-
matical Statistics, 42, 1815-1842.

RUBINSTEIN, R.Y. (1981), Simulation and the Monte Carlo Method,
New York: John Wiley.

STONE, M.H. (1974), ‘‘Cross-Validatory Choice and Assessment of
Statistical Predictions,”’ Journal of the Royal Statistical Society, Ser.
B, 36, 111-147.

TAPIA, R.A., and THOMPSON, I.R. (1978), Nonparametric Proba-
bility Density Estimation, Baltimore: Johns Hopkins University
Press.



	Article Contents
	p. 599
	p. 600
	p. 601
	p. 602
	p. 603
	p. 604
	p. 605
	p. 606
	p. 607
	p. 608

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 79, No. 387 (Sep., 1984), pp. 489-746
	Front Matter
	Applications
	Probability Forecasting in Meterology [pp.  489 - 500]
	Improvement by Planned Multistage Selection [pp.  501 - 509]
	Monitoring the 1982 Spanish Socialist Victory: A Bayesian Analysis [pp.  510 - 515]
	Reducing Bias in Observational Studies Using Subclassification on the Propensity Score [pp.  516 - 524]
	A Demographic Analogy for Shareowner Accounts [pp.  525 - 530]
	Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods [pp.  531 - 554]
	Telephone Interview and Mail Questionnaire Applications of the Randomized Response Model [pp.  555 - 564]

	Theory and Methods
	Conditional Permutation Tests and the Propensity Score in Observational Studies [pp.  565 - 574]
	Cross-Validation of Regression Models [pp.  575 - 583]
	A Fast and Efficient Cross-Validation Method for Smoothing Parameter Choice in Spline Regression [pp.  584 - 589]
	A Comparison of Minimum Distance and Maximum Likelihood Estimation of a Mixture Proportion [pp.  590 - 598]
	Projection Pursuit Density Estimation [pp.  599 - 608]
	Smoothness Priors and Nonlinear Regression [pp.  609 - 615]
	A Refined Method of Robust Smoothing [pp.  616 - 623]
	Design-Consistent Versus Model-Dependent Estimation for Small Domains [pp.  624 - 631]
	Maximum Likelihood Estimation in the Mover-Stayer Model [pp.  632 - 638]
	Tests for Differences in Tumor Incidence Based on Animal Carcinogenesis Experiments [pp.  639 - 648]
	Testing Goodness of Fit for Proportional Hazards Model with Censored Observations [pp.  649 - 652]
	Two-Sample Asymptotically Distribution-Free Tests for Incomplete Multivariate Observations [pp.  653 - 661]
	Required Sample Size for Categorical Matching [pp.  662 - 667]
	The F Statistic in the Two-Way Layout with Rank-Score Transformed Data [pp.  668 - 673]
	Comparison of Asymptotically Distribution-Free Procedures for the Analysis of Complete Blocks [pp.  674 - 685]
	A Likelihood Ratio Test for Stochastic Ordering [pp.  686 - 691]
	The G-Spectral Estimator [pp.  692 - 701]
	The Effect of Nonorthogonality on the Dependence of F Ratios Sharing a Common Denominator [pp.  702 - 708]
	An Algorithm for Exact Logistic Regression [pp.  709 - 711]
	Range Preserving Unbiased Estimators in the Multinomial Case [pp.  712 - 714]
	One-Sided Simultaneous Bounds in Linear Regression [pp.  715 - 719]
	A Note on Ordinary Least Squares Methods for Two-Stage Sampling [pp.  720 - 721]
	On the Inverse of a Patterned Covariance Matrix [pp.  722 - 723]

	Book Reviews
	[List of Book Reviews] [p.  724]
	untitled [p.  725]
	untitled [pp.  725 - 727]
	untitled [pp.  727 - 728]
	untitled [pp.  728 - 729]
	untitled [pp.  729 - 731]
	untitled [pp.  731 - 732]
	untitled [p.  732]
	untitled [pp.  732 - 733]
	untitled [p.  733]
	untitled [p.  734]
	untitled [p.  734]
	untitled [pp.  734 - 735]
	untitled [p.  735]
	untitled [pp.  735 - 736]
	untitled [p.  736]
	untitled [p.  736]
	untitled [pp.  736 - 737]
	untitled [p.  737]
	untitled [pp.  737 - 738]
	untitled [p.  738]
	untitled [pp.  738 - 739]
	untitled [p.  739]
	untitled [pp.  739 - 740]
	untitled [pp.  740 - 741]
	untitled [p.  741]
	untitled [p.  741]
	untitled [pp.  741 - 742]
	untitled [p.  742]
	untitled [pp.  742 - 743]
	untitled [p.  743]
	untitled [pp.  743 - 744]
	untitled [p.  744]
	untitled [pp.  744 - 745]
	untitled [p.  745]

	Publications Received [pp.  745 - 746]
	Back Matter



