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Projection Pursuit

A time-honored method for detecting unanticipated
‘structure’ — clusters, outliers, skewness, concentra-
tion near a line or a curve — in bivariate data is to
look at a scatterplot, using the ability of the human
perceptional system for instantaneous pattern discov-
ery. The question is how to bring this human ability
to bear if the data are high-dimensional.

Scanning all 45 pairwise scatterplots of a 10-
dimensional data set already tests the limits of most
observers’ patience and attention span, and it is
easy to construct examples where there is obvious
structure in the data that will not be revealed in any
of those plots. This fact is illustrated in Figures 1.

Figure 1 shows a two-dimensional data set con-
sisting of two clearly separated clusters. We added
eight independent standard Gaussian ‘noise’ variables
and then rotated the resulting 10-dimensional data set
into a random orientation. Visual inspection of all 45
pairwise scatterplots of the resulting 10-dimensional
data fails to reveal the clusters; the scatterplot which,
subjectively, appears to be most structured is shown
in Figure 2.

However, we know that there do exist planes for
which the projection is clustered; the question is how
to find one.

Looking for Interesting Projections

The basic idea of projection Pursuit, suggested by
Kruskal [15] and first implemented by Friedman and
Tukey [10], is to define a projection index I(u, V)
measuring the degree of ‘interestingness’ of the
projection onto the plane spanned by the (orthogonal)
vectors u and v and then use numerical optimization
to find a plane maximizing the index.

A key issue is the choice of the projection index.
Probably the most familiar projection index is the
variance of the projected data. A plane maximiz-
ing this index can be found by linear algebra — it
is spanned by the two largest principal components
(see Principal Component Analysis). In our exam-
ple, however, projection onto the largest principal
components (Figure 3) does not show any cluster-
ing — variance is not necessarily a good measure of
‘interestingness’.
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Figure 1 Sample from a bivariate mixture of two
Gaussians
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Figure 2 Most ‘structured’ pairwise scatterplot

Instead, a better approach is to first sphere the
data (transform it to have zero mean and unit covari-
ance) and then use an index measuring the devia-
tion of the projected data from a standard Gaussian
distribution. This choice is motivated by two obser-
vations. First, if the data are multivariate Gaussian

(see Bivariate Heritability), then all projections will

be Gaussian and projection pursuit will not find
any interesting projections. This is good, because
a multivariate Gaussian distribution is completely
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Figure 3 Projection onto largest principal components

specified by its mean and covariance matrix, and
there is nothing more to be found. Second, Diaconis
and Freedman [3] have shown that under appropriate
conditions most projections of multivariate data are
(approximately) Gaussian, which suggests regarding
non-Gaussian projections as interesting.

Many projection indices measuring deviation from
Gaussianity have been devised; see, for exam-
ple [2,11-14]. Figure 4 shows projection of our sim-
ulated data onto a plane maximizing the ‘holes’
index [1]; the clusters are readily apparent.

Example: The Swiss Banknote Data

The Swiss Banknote data set [4] consists of measure-
ments of six variables (width of bank note; height
on left side; height on right side; lower margin;
upper margin; diagonal of inner box) on 100 genuine
and 100 forged Swiss bank notes. Figure 5 shows
a projection of the data onto the first two principal
components. The genuine bank notes, labeled ‘4,
are clearly separated from the false ones.

Applying projection pursuit (with a Hermite index
of order 7) results in the projection shown in
eFigure 6 (adapted from [14]).

This picture (computed without use of the class
labels) suggests that there are two distinct groups
of forged notes, a fact that was not apparent from
Figure 5.

Figure 4 Projection onto plane maximizing the ‘holes’
index
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Figure 5 Projection of Swiss Banknote data onto largest
principal components

Projection Pursuit Modeling

In general there may be may be multiple interest-
ing views of the data, possibly corresponding to
multiple local maxima of the projection index. This
suggests using multiple starting values for the nonlin-
ear optimization, such as planes in random orienta-

tion (see Optimization Methods). A more principled

approach is to remove the structure revealed in con-
secutive solution projections, thereby deflating the
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Figure 6 Projection of Swiss Banknote data onto plane
maximizing the ‘Hermite 7’ index

corresponding local maxima of the index. In the case
where a solution projection shows multiple clusters,
structure can be removed by partitioning the data
set and recursively applying projection pursuit to the
individual clusters. The idea of alternating between
projection pursuit and structure removal was devel-
oped into a general projection pursuit paradigm for
multivariate analysis by Friedman and Stuetzle [9].
The projection pursuit paradigm has been applied to
density estimation [6, 8, 12, 13], regression [7], and
classification [5].

Software

Projection Pursuit is one of the many tools for visu-
alizing and analyzing multivariate data that together
make up the Ggobi Data Visualization System. Ggobi
is distributed under an AT&T open source license.
A self-installing Windows binary or Linux/Unix ver-
sions as well as accompanying documentation can be
downloaded from www.ggobi .org.
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4 Projection Pursuit

Abstract: Projection pursuit was conceived as a method for finding ‘interesting’ one- or two-dimensional
projections of multivariate data revealing unanticipated structure such as clusters, skewness, or presence of
outliers. The initial idea of exploring high-dimensional data using low-dimensional marginals was later extended
into a general paradigm for modeling multivariate data that has been applied to density estimation, regression,
and classification.
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