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Variable Resolution Bivariate Plots 

Chisheng HUANG, John Alan MCDONALD, and Werer STUETZLE 

Scatterplots are the method of choice for displaying the distribution of points in 
two dimensions. They are used to discover patterns such as holes, outliers, modes, and 
association between the two variables. A common problem is overstriking-the overlap 
on the plotting surface of glyphs representing individual observations. Overstriking can 
create a misleading impression of the data distribution. The variable resolution bivariate 
plots (Varebi plots) proposed in this article deal with the problem of overstriking by 
mixing display of a density estimate and display of individual observations. The idea is 
to determine the display format by analyzing the actual amount of overstriking on the 
screen. Thus, the display format will depend on the sample size, the distribution of the 
observations, the size and shape of individual icons, and the size of the window. It may 
change automatically when the window is resized. Varebi plots reveal detail wherever 
possible, and show the overall trend when displaying detail is not feasible. 

Key Words: Histogram; Scatterplot; Visualization. 

1. INTRODUCTION AND MOTIVATION 

Scatterplots are the method of choice for visualizing the distribution of points in 
two dimensions. They are used to discover patterns such as holes (areas with few data 

points), outliers, modes, association between the two variables, and so on. 
A common problem with scatterplots is overstriking-the overlap on the plotting sur- 

face of glyphs representing individual observations. Overstriking can create a misleading 
impression of the data distribution. As an example, consider Figure 1. This scatterplot 
was produced during the analysis of data on a colony of Magellanic penguins in Punta 

Tombo, Argentina. The observations are penguin nest sites. The variables are ground 
composition at a site (percentage of sand) on the vertical axis and vegetation coverage 
(percentage of bare ground) on the horizontal axis. 

The displayed point pattern suggests the mode to be within the rectangle defined 

by x = (30, 80) and y = (0, 15). Figure 2, however, was obtained by binning the points 
into a 20 x 20 grid and encoding the counts into gray levels, revealing that the visual 

impression is misleading and that there is a mode in the lower right corer of the plot. 
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to notice and therefore more insidious. 
A way of coping with the problem of overstriking is to abandon the idea of draw- 

ing individual points and instead draw agglomerative glyphs representing collections of 
points. We can, for example, bin the drawing area into rectangular or hexagonal bins and 
compute a two-dimensional histogram (Carr, Littlefield, Nicholson, and Littlefield 1987). 
The histogram can be drawn as a perspective plot, or we can encode the counts in gray 
scale (as in Fig. 2) or glyph size (Fig. 3). 

Besides force of habit and inertia there are at least two other arguments against 
routinely replacing scatterplots by two-dimensional histograms: 

* The discretization inherent in a histogram smears out fine structure. As an illustra- 
tion, Figure 4 (a) shows a snapshot of 200 rotating 3D points whose coordinates 
were generated by the infamous RANDU (Knuth 1981) random number genera- 
tor. See Tiemey (1990) for the particular implementation that we used. Figure 4 
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Figure 2. Same Data as Figure 1. 2-D histogram drawn by encoding bin counts in gray scale. 

(b), (c), and (d) show histograms of the same 200 points, with different numbers 
of bins. None of the histograms reveals RANDU's lack of randomness as clearly 
as the scatterplot. 

* Encoding counts into gray level or glyph size requires specification of a mapping. 
If we want to judge on how many data points a feature of the histogram, like an 

apparent mode, is based, we need to mentally invert this mapping. This process 
is not immediate, and we want to avoid it whenever possible. 

In this article we present two suggestions for dealing with the problem of overstriking 
in scatterplots. 

1. We mix individual and agglomerative glyphs in the same plot. 
2. We choose between drawing individual and agglomerative glyphs by analyzing 

the actual amount of overstriking on the screen. The display format thus will 

depend on the sample size, the distribution of points, the size and shape of the 
individual glyphs, and the size of the drawing area. 

Adapting the type of display to the size of the drawing area is particularly helpful and 
effective when plots are displayed in windows on a screen, where they can be shrunk to 
free up space and expanded again for closer inspection. 

As an illustration, Figures 5 and 6 show the same data set as Figures 1 and 2 for 
different sizes of the drawing area. Notice that the areas around (65,16) and (100,16) 
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Figure 3. Same Data as Figure 1. 2-D histogram drawn by encoding bin counts in rectangle size. 

in Figure 5 display an agglomerative glyph and switch to displaying point glyphs in the 

bigger Figure 6. 
The rest of this article is organized as follows. Section 2 describes in detail how 

Varebi plots are drawn. Section 3 contains additional examples. A discussion concludes 
the article. 

2. DESCRIPTION OF VAREBI PLOTS 

We will first discuss Varebi plots on black-and-white displays and then describe a 
variation designed for gray level displays. The gray level version can convey information 
better on the data distribution when the drawing space is very small. 

2.1 VAREBI PLOTS ON BLACK-AND-WHITE DISPLAYS 

Drawing a Varebi plot involves a sequence of steps. 

I I I I 
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Figure 4. 200 Points Generated by RANDU. Scatterplot (a) and 2-D histograms with 5x 5 (b), 10x 10 (c), 
and 20 x 20 (d) bins. 

2.1.1 Step 1--Binning 

We bin the data points into a regular grid with a default resolution of 20 x 20. This 
results in bins with a side length on the order of 15 pixels for a 300 x 300 window, a 
size that we frequently observed ourselves using. A bin size of 15 x 15 pixels is large 
enough to allow drawing of agglomerative glyphs in at least five visually distinguishable 
sizes. 

Choosing a fixed number of bins, independent of the plot size on the screen, has 
the advantage that the plot changes in predictable ways when the window is reshaped. 
Enlarging the window may change some bins from showing agglomerative glyphs to 
showing individual observations, but never vice-versa. The analogous statement is true 
for reduction of the window size. 
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Figure 5. Same Data as Figure 1. Plot size on a computer screen is 313 x 334 pixels. 

2.1.2 Step 2-Application of a Transfer Function 

The basic tenet of binary Varebi plots is that the amount of ink actually deposited 
in a bin should be a non-decreasing function of the number of observations in the bin 

(up to some tolerance, as described in Step 3). Let s be the bin area on the screen (in 
pixels), nmax the largest bin count, and r the size of an individual point glyph (in pixels). 
(On many displays single pixel dots are hard to see, requiring 7 > 1.) A non-decreasing 
function, T: [1 : nmax] - [ : s], that assigns an amount of ink to each bin count is 
called a transfer function. 

For small bin counts T has to be linear with slope r, because we want to draw 
individual observations in bins without overstriking. However, if r x nmax > s, the simple 
choice Tl (n) = r x n is not feasible. In this case we have to "blunt" T-that is, flatten 
it out for counts above some cutoff ncrit. There are many possible ways of doing so: any 
non-decreasing function T will do as long as T(n) = Tx n for 0 < n < ncrit < Ls/TJ, 
and T(nmax) = s. We chose a simple one, shown in Figure 7. If we have to use the 
blunted transfer function Tb, we draw agglomerative glyphs in all bins with bin count 

nij > ncrit, in order to avoid violating the monotonicity condition. 

dr, A~~~~~~~ 
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Figure 6. Same Data as Figure 1. Plot size on a computer screen is 384 x 397 pixels. 

It remains to discuss the choice of ncrit. Clearly, ncrit should increase when the size 
of the plot and therefore the bin area s increases-we want to use additional screen 

space to improve the resolution of the plot-that is, draw more individual glyphs. We 

set ncrit = Ls2/(T2nmax)j. The motivation for this choice is that, as s rT x nmax, the 
blunted transfer function Tb approaches Tl. This makes for a smooth transition of display 
format when the drawing space increases to the point where we can switch to the linear 
transfer function. 

2.1.3 Step 3-Calculating the Overplotting Index and Drawing 

The final step in producing a Varebi plot is to decide, for each bin, whether to draw 
individual glyphs or an agglomerative glyph. Let aij be the amount of ink (number of 
black pixels) in the corresponding bin on the screen if we simply drew the glyphs without 

paying any attention to overplotting. We measure the amount of overplotting in a bin by 
the overplotting index 

T X nij 

aij 

-,. ....X ,-- 
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Figure 7. Blunted Transfer Function. 
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Figure 8. Same Data as Figure 1. Varebi plot (a) and scatterplot (b) of screen size 205 x 212 pixels. (Figure 
not printed to scale.) 
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Figure 9. Same Data as Figure 1. Varebi plot of screen size 480 x 485 pixels (a). Scatterplot of screen size 480 
x 485 pixels (b). (Figure not printed to scale.) 
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If we can use the linear transfer function Ti, we draw agglomerative glyphs for 
all bins for which the overplotting index oij is greater than some threshold Ocrit. If we 
have to use the blunted transfer function Tb, we draw agglomerative glyphs for all bins 
with nij > ncrit or oij > cnit. In the examples, crit = .35. An agglomerative glyph is 
drawn as closely as possible to the center of the mass within each bin while keeping the 

glyph completely inside the bin. This has the additional benefit of breaking the artificial 

regularity imposed by the grid (Carr et al. 1987). 

2.2 VAREBI PLOTS ON GRAY LEVEL DISPLAYS 

Varebi plots will lose their ability to convey an accurate image of the data distribution 
when the size of the plotting area gets so small that there are only a few possible values 
for the size of an agglomerative glyph. If the display can show gray levels we can, 
however, represent bin count by gray scale instead of glyph size. 

Let nmin be the smallest bin count among all the bins with significant overstriking- 
that is, with oij > ocrit. Bins with nij > min are drawn in gray. The gray level is 
determined by a nondecreasing function D : [nmin, nmax] -- [dl, d2], where dl is lightest 
and d2 is darkest. All bins with nij < nmin display individual observations. Therefore, 
gray level bins always have a higher count than bins showing individual observations. 
This is necessary because it is impossible to visually establish an ordering between 
amount of (black) ink in an area, and gray level. 

In the examples we switch to encoding counts by gray level instead of glyph size 
whenever either bin width or bin height is less than 10 pixels. We do not use gray scale 

encoding otherwise because we want as many bins as possible to display point glyphs, 
because perception of gray level is affected by the surrounding area (Foley, van Dam, 
Feiner, and Hughes 1990), and because comparing gray levels is not easy, especially for 

objects positioned far apart. 
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Figure 10. 400 points generated by RANDU. Varebi plot (a) and 2-D histogram (b). 
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Figure 11. 1,600 Points Generated by RANDU. Varebi plot (a) and 2-D histogram (b). 

2.3 HEXAGONAL VERSUS RECTANGULAR BINS 

The Varebi plots were implemented using rectangular bins, rather than hexagonal 
bins as advocated by Carr et al. (1987). Hexagonal bins give slightly better density 
estimates and result in more eye pleasing displays because they de-emphasize horizontal 
and vertical directions. We chose rectangular bins for reasons of speed and ease of 

implementation. 
Rectangular bins also have an advantage when Varebi plots are used in conjunction 

with scatterplot brushing, or when we wish to encode an additional categorical variable 
in color. In this situation it is not clear how to divide a hexagonal glyph into colored 

parts, whereas we can convert rectangles into divided color bars. 
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Figure 12. 6,400 Points Generated by RANDU. Varebi plot (a) and 2-D histogram (b). 
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Figure 13. Scatterplot of 65,536 Points from a 256 x 256 MRI Image. 

3. VAREBI PLOT EXAMPLES 

We present three sets of examples: 

* Figures 8a, 9a and Figures 8b, 9b show Varebi plots and conventional scatterplots, 
respectively, of the same data displayed in Figure 1, for different window sizes. 

Overstriking in this example is quite serious, so that even a large plot like the 
one shown in Figure 9, which would take up a quarter of a 1,000 x 1,000 screen, 
displays many agglomerative glyphs. 

* Figures 10-12 show RANDU samples of sizes ranging from 400 to 6,400. Varebi 

plots are on the left; two-dimensional histograms on the right. Note that, in contrast 
to the bivariate histograms, all Varebi plots clearly reveal the lack of randomness. 

* Figures 13-15 show 65,536 pairs of measurements from a 256 x 256 MRI (mag- 
netic resonance imaging) image. The MRI data set has an enormous peak (38,455 
points) at (0, 0), corresponding to the background of the image. The second high- 
est peak corresponds to 70 points. The scatterplot in Figure 13 fails to reveal 
the peak at the origin. The Varebi plot in Figure 14 shows the enormous peak, 
but has not much resolution anywhere else. This is hard to avoid because the 

dynamic range is so large. Figure 15 shows a Varebi plot with the background 
pixels removed. This plot gives a much clearer picture of the rest of the data. 
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Figure 14. Varebi Plot of 65,536 Points from a 256 x 256 MRI Image. 

4. DISCUSSION 

There are a number of existing techniques attempting to deal with the problem of 

overstriking in scatterplots. They tend to fall into one of two categories-those that 

display individual data points and those that display a density estimate. 

Examples for techniques in the first category are jittering (Chambers, Kleiner, and 

Tukey 1983) and use of unfilled circles as plotting symbols (Cleveland 1985). 
Jittering was originally proposed to alleviate overstriking in plots of a euclidean 

variable against a categorical variable. In scatterplots, points obscured by overplotting 
could be offset by a small random displacement. (Of course, it would be necessary to 
remind viewers that jittering was employed in producing the plot.) 

Using unfilled circles as plotting symbols helps as long as there are not too many 
exact ties. The intersection of unfilled circles gives a geometric shape distinctly differ- 
ent from a circle. Intersections of axis-parallel rectangles, on the other hand, again are 

rectangles, which makes it hard to differentiate observations. 
Those techniques clearly break down if the density of points in the drawing area 

gets too large. 
Techniques displaying a density estimate typically use a two-dimensional histogram 

with rectangular or hexagonal bins. The histogram can be displayed as a three-dimensional 

perspective plot or a contour plot. Alternatively, bin counts can be encoded into size or 

- 
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Figure 15. Varebi Plot of 27,081 Non-Background Points from a 256 x 256 MRI Image. 

gray level of glyphs representing the bins. Cleveland and McGill (1984) proposed repre- 
senting bins by sunflowers. The number of petals in a sunflower encodes the bin count. 
If the bin count is 1, the sunflower degenerates to a point. Sunflowers can also be used 
with unbinned data when exact overplotting occurs. 

These techniques result in an unnecessary loss of detail in regions of the drawing 
area with low point density, which could be the entire area if it is large, or if the sample 
size is small. 

Carr et al. (1987) proposed a technique using both individual and agglomerative 
glyphs. They compute a two-dimensional histogram density estimate with hexagonal 
bins, encode bin count into the size of hexagons drawn into bins with four or more 

observations, and draw individual glyphs in bins with three or fewer observations. This 

technique falls in between the two categories. 
The Varebi plots proposed and illustrated in this article mix agglomerative and in- 

dividual glyphs, display of a density estimate, and display of individual observations. 
The novel idea is to determine the display format by analyzing the actual amount of 

overstriking on the screen. Thus, the display format will depend on the sample size, the 
distribution of the observations, the size and shape of the individual glyphs, and the size 
of the window. It may automatically change when the window is resized. Varebi plots do 
not suffer from the shortcomings of techniques using a fixed display format, and they can 
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be used on binary displays. They reveal detail wherever possible, and show the overall 
trend when displaying detail is not feasible. 

[Received November 1995. Revised March 1997.] 
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